[1]BETENSKY R A. Measures of follow-up in time-to-event studies: Why provide them and what should they be?[J]. Clinical Trials, 2015, 12(4):403-408.
[2]GEORGE B, SEALS S, ABAN I. Survival analysis and regression models [J]. Journal of Nuclear Cardiology, 2014, 21(4):686-694.
[3]DOUPE P, FAGHMOUS J, BASU S. Machine learning for health services researchers[J]. Value in Health, 2019, 22(7):808-815.
[4]HOSNI M, ABNANE I, IDRI A, et al. Reviewing ensemble classification methods in breast cancer[J]. Computer Methods Programs Biomedicine, 2019, 177:89-112.
[5]CHIAYU SU E, IQBAL U, JACKLI Y C. Unity is Strength: Improving biomedical classification performance based on ensemble learning approaches[J]. Computer
Methods Programs Biomedicine, 2017, 142:A1.
[6]XU G W, LIU M, JIANG Z F, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning[J]. Sensors, 2019,
19(5):1088.
[7]VAN DER LAAN M J, RUBIN D. Targeted maximum likelihood learning[J]. The International Journal of Biostatistics, 2006, 2(1):1-40.
[8]PIRRACCHIO R, PETERSEN M L, CARONE M, et al. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): A populationbased stud
[J]. Lancet Respir Med, 2015, 3(1):42-52.
[9]VAN DER L M, ROSE S. Targeted Learning: Causal inference for observational and experimental data[M].New York: Springer Science+Business Media, 2011.
[10]WONG J, MANDERSON T, ABRAHAMOWICZ M, et al. Can hyperparameter tuning improve the performance of a super learner?:A case study[J]. Epidemiology,
2019, 30(4):521-531.
[11]TOMCZAK K, CZERWINSKA P, WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledg[J]. Contemp Oncol(Poznan), 2015, 19(1A):A68-A77.
[12]CHEN F, LI Z, ZHOU H. Identification of prognostic miRNA biomarkers for predicting overall survival of colon adenocarcinoma and bioinformatics analysis:A study based on The Cancer Genome Atlas database[J]. Journal of Cellular Biochemistry, 2019, 120(6):9839-9849.
[13]LONGATO E, VETTORETTI M, DI CAMILLO B. A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models[J]. Journal of Biomedical Informatics, 2020, 108:103496.
[14]LI J Q, GU J H, LU Y, et al. Development and validation of a Super learnerbased model for predicting survival in Chinese Han patients with resected colorectal cancer[J]. Jpn J Clin Oncol, 2020, 50(10):1133-1140.
[15]GOLMAKANI M K, POLLEY E C. Super learner for survival data prediction[J/OL]. Int J Biostat, 2020,16(2).https://www.degruyter.com/view/journals/ijb/16/2ijb.16.issue-2.xml. |