|
|
Average hospitalization costs per-time of patients with depression based on new grey correlation and degree of structural variation |
Chen Jingjing1,Shi Wenqi1,Chen Xiaodong2,Chen Xiaoxia1,Liu Zifeng1,Deng Shumin1 |
1 Big Data and Artificial Intelligence Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China;
2 Department of Psychosis, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
|
|
|
Guide |
|
Abstract Objective To explore the structure and importance ranking of average hospitalization costs for patients with depression, and to provide a basis for improving the structure of patients′ hospitalization costs and effective cost control.Methods Information on the hospitalization costs of patients with depression in a tertiary hospital in Guangzhou City from 2018 to 2023 was collected, and the degree of association, composition ratio, and change of each cost with the average hospitalization costs per-time were evaluated by using the degree of structural variation and new gray correlation analysis.Results From 2018 to 2023, the average hospitalization cost per-time of patients with first gradually increased and then decreased, the proportion of diagnostic fee and examination fee continued to increase, and the proportion of nursing fee and drug fee continued to decrease. The degree of structural change of average hospitalization cost per-time during the 6-year period was 33.84%, and the degree of annual average structural change was 5.64%. The top 3 contributors to the structural change were drug fee (26.77%), diagnostic fee (23.43%) and medical service fee (19.77%), and the cumulative contribution of the three amounted to 69.97%. The results of the new gray correlation analysis showed that the treatment fee (0.939) had the greatest impact on the average hospitalization cost per-time of depressed patients, followed by the diagnostic fee (0.883), the examination fee (0.866) and the medical service fee (0.817).Conclusion Treatment fee, diagnostic fee and examination fee are the main factors affecting the hospitalization cost of depressed patients, and the income of nursing fee and drug fee continues to decrease. It is recommended to continuously optimize the cost structure and establish a reasonable, stable and efficient cost control program.
|
Received: 19 February 2024
|
|
Fund: |
|
|
|
[1]LU J, XU X F, HUANG Y Q, et al. Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study[J]. Lancet Psychiatry, 2021,8(11):981-990. DOI: 10.1016/S2215-0366(21)00251-0.
[2]中共中央国务院.“健康中国 2030”规划纲要[A/OL].(2016-10-25)[2024-01-28].http://www.gov.cn/xinwen/2016-10/25/content_5124174.htm.
[3]张婧,杨冬林,肖鹏.抑郁症患者住院费用影响因素研究:基于灰色关联和结构变动度分析[J].卫生软科学,2022,36(5):54-57.DOI: 10.3969/j.issn.1003-2800.2022.05.011.
[4]广州医保DIP改革入选广州市首批“最具获得感”改革案例[EB/OL].(2022-09-17)[2023-09-17].https://www.gz.gov.cn/xw/zwlb/bmdt/sylbzj/content/post_8572366.html.
[5]马宗奎,刘明孝,胡靖琛,等.基于新灰色关联与结构变动度的DRG付费改革对冠心病患者次均住院费用影响[J].中国医院管理,2022,42(8):70-73.
[6]朱伟俊,马进,崔文彬,等.小儿肺炎住院费用的新灰色关联及结构变动度分析[J].上海交通大学学报(医学版),2020,40(5):666-670.DOI: 10.3969/j.issn.1674-8115.2020.05.017.
[7]张丽成,田雪,安吉,等.2015—2017年我国皮肤癌住院患者直接经济负担研究[J].中国医院管理,2020,40(10):32-35.
[8]宋佳明,王欣媛,徐佳苗,等.2015—2019年公立中医院医疗收入分析:基于结构变动和灰色关联法[J].南京医科大学学报(社会科学版),2022,22(1):82-87.DOI: 10.7655/NYDXBSS20220115.
[9]赵越,洪龙燕,任沁炎,等.长治市高发恶性肿瘤患者住院医疗费用的结构变动度分析[J].现代预防医学,2023,50(20):3762-3766.DOI: 10.20043/j.cnki.MPM.202306017.
[10]马强,张彩凤,李芬,等.江西省某三级甲等医院2型糖尿病患者次均住院费用新灰色关联分析[J].中国卫生资源,2021,24(2):171-175.DOI: 10.13688/j.cnki.chr.2021.200589.
[11]王冰洁,李喜平.5439例精神疾病患者住院费用影响因素分析[J].中国医院统计,2013,20(1):30-36.DOI: 10.3969/j.issn.1006-5253.2013.01.012.
[12]北京市医疗保障局.北京市医疗保障局关于执行第一、二、四批国家组织药品集中采购和京津冀药品联合带量采购等中选结果有关事项的通知[J].北京市人民政府公报,2021(24):59-63.
[13]张远妮,姚奕婷,邹俐爱,等.广东省综合性公立医院住院费用控制策略探讨:基于灰色关联和结构变动度分析[J].中国卫生经济,2019,38(2):21-23.DOI: 10.7664/CHE20190205.
[14]广东省卫生健康委员会.关于印发广东省医疗机构基本用药供应目录管理指南的通知:粤卫办〔2012〕1号[A/OL].(2013-11-08)[2023-11-08]. https://wsjkw.gd.gov.cn/gkmlpt/content/2/2128/post_2128184.html#2531.
[15]于晶尧,张志豪,李扬,等.新疆某县级医院次均住院费用的灰色关联分析及趋势预测[J].中国病案,2023,24(6):76-79.DOI: 10.3969/j.issn.1672-2566.2023.06.027.
[16]加快推进检查检验结果互认[J].中国数字医学,2021,16(7):49.
[17]严敬琴,彭小冬,刘慧铭,等.基于新灰色关联与结构变动度的精神障碍患者住院费用结构分析[J].四川精神卫生,2019,32(5):437-441.DOI: 10.11886/j.issn.1007-3256.2019.05.011.
|
[1] |
Yan Bo1, Zheng Xiaohui1, Luo Shiyun1, Lai Yuting1, Tan Jingyi1, Lin Aihua. Efficacy of internet-based self-help interventions on addescents with depression: a systematic review and meta-analysis[J]. journal1, 2023, 30(4): 312-320. |
[2] |
Jin Juan,Yang Peiying,Li Xuemin,Gao Jinjing,Luo Peipei,Zhang Yuan,Yin Jinling,Mi Baibing,Zhang Yan. Association of childhood trauma with anxiety, depression and suicidal tendency in people living with HIV/AIDS[J]. journal1, 2023, 30(4): 275-280. |
[3] |
Chen Ming,Liu Jinchan,Tang Tianshu,Xu Dehua,Chen Xiaolin,Rao Shaoqi. Causal relationship between depression and interstitial lung disease with two-sample Mendelian randomization[J]. journal1, 2023, 30(2): 81-86. |
[4] |
Lin Jianchao. Analysis of inpatient medical income in tertiary public hospitals based on structural change degree[J]. journal1, 2023, 30(1): 55-58. |
[5] |
Liu Haixia, Yan Haosen, Li Rui, Xu Zhaoyang, Xu Mingdan. Depression status and its influencing factors in urban and rural elderly in China[J]. journal1, 2022, 29(3): 201-206. |
[6] |
Ding Zhujie, Li Yun, Cai Minke. Effect of motivational interview combined with procedural health education management on drug compliance of patients with mental depression[J]. journal1, 2018, 25(5): 361-363. |
|
|
|
|