|
|
Application of SAS interactive matrix language in the nutrient data processing of dietary investigation |
Zhang Binyan, Mi Baibing, Wang Yutong, Liu Huimeng, Dang Shaonong, Yan Hong |
Department of Epidemiology and Biostatistics, School of Public Health, Xi′an Jiaotong University Health Science Center, Xi′an 710061, China |
|
|
Abstract Objective To introduce the calculation of nutrient intake based on SAS interactive matrix language for semi-quantitative food frequency questionnaire (SQFFQ) and its application in nutritional epidemiological dietary investigation.Methods Three thousand women who completed SQFFQ were randomly selected from a large-scale birth defect investigation dataset in Shaanxi Province as a training dataset using the simple random sampling method by PROC SURVEYSELECT program with SAS 9.4. Next, the interactive matrix language PROC IML programming was used to demonstrate the calculation of SQFFQ nutrient intake.Results According to the principle of matrix operation, PROC IML was used to obtain the calculation module and 3 000 samples were validated to obtain 25 nutrients intake. Meanwhile, in the SAS log output window, the execution time of the PROC IML process was 0.59 s, which was efficient and fast.Conclusion The SAS interactive matrix language was used to calculate the nutrient intake of SQFFQ with high efficiency, simplicity and accuracy, which was suitable for SQFFQ analysis.
|
Received: 31 July 2021
|
|
|
|
[1]HU Y, DING M, YUAN C, et al. Association between coffee intake after diagnosis of colorectal cancer and reduced mortality[J]. Gastroenterology, 2018, 154(4):916-926. DOI:10.1053/j.gastro.2017.11.010.
[2]NGUYEN C L, HOANG D V, NGUYEN P T H, et al. Low dietary intakes of essential nutrients during pregnancy in Vietnam[J]. Nutrients, 2018, 10(8):E1025.DOI:10.3390/nu10081025.
[3]THORPE M G, MILTE C M, CRAWFORD D, et al. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians[J]. Int J Behav Nutr Phys Act, 2016, 13:30.DOI:10.1186/s12966-016-0353-2.
[4]谢彪,曲思杨,相静,等.基于logistic回归模型的儿童过敏性紫癜影响因素研究[J].中国医院统计,2015,22(5):333-337.DOI:10.3969/j.issn.1006-5253.2015.05.004.
[5]于科,项永兵.食物频率问卷的信度和效度研究进展[J].中国慢性病预防与控制,2006,14(2):136-139.DOI:10.3969/j.issn.1004-6194.2006.02.027.
[6]热孜亚·阿不来提,吐尔逊江·买买提明,王先化.新疆阜康市270名哈萨克族在校初中生膳食现状调查[J].中国儿童保健杂志,2017,25(1):63-66.
[7]郑艳泽,翟成凯,刘亚祺,等.基于Excel的营养计算器设计及应用[J].中国食物与营养,2010,16(4):82-84.DOI:10.3969/j.issn.1006-9577.2010.04.023.
[8]杨林娜,李峰.基于Excel程序自制的营养计算程序在危重烧伤患者膳食营养管理中的应用[J].中华烧伤杂志,2019,35(8):622-623.DOI:10.3760/cma.j.issn.1009-2587.2019.08.015.
[9]党少农, 王振杰, 康轶君, 等. 运用半定量食物频率调查法评估拉萨农村藏族婴幼儿母亲的膳食结构[J].中华流行病学杂志, 2010, 31 (4): 394-399.DOI:10.3760/cma.j.issn.0254-6450.2010.04.008.
[10]崔荣泉,杨泮池.工科线性代数[M].西安:西安交通大学出版社,2006.
[11]YANG J, CHENG Y, PEI L, et al. Maternal iron intake during pregnancy and birth outcomes: A cross-sectional study in Northwest China[J]. Br J Nutr, 2017, 117(6):862-871.DOI:10.1017/S0007114517000691.
[12]王睿,贺佳.随机抽样方法的SAS实现[J].中国卫生统计,2007,24(1):85.DOI:10.3969/j.issn.1002-3674.2007.01.033.
[13]谷玉婷,翁俊,彭志刚. 病案随机抽样的SAS实现[J]. 中国医院统计,2021,28(4):380384.DOI:10.3969/j.issn.1006-5253.2021.04.019.
[14]CHENG Y, YAN H, DIBLEY M J, et al. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China[J]. Asia Pac J Clin Nutr, 2008, 17(1):166-177.
[15]杨月欣,王光亚,潘兴昌. 中国食物成分表[M]. 北京:北京大学医学出版社,2002,2009.
[16]杨月欣.中国食物成分表[M].北京:北京大学医学出版社,2004.
[17]朱世武.SAS编程技术教程[M].北京:清华大学出版社,2007.
[18]MCGOWAN C A, MCAULIFFE F M. Maternal dietary patterns and associated nutrient intakes during each trimester of pregnancy[J]. Public Health Nutr,2013,16(1):97-107.DOI:10.1017/S1368980012000997. |
[1] |
Gu Yuting, Weng Jun, Peng Zhigang. Random sampling of medical records based on SAS[J]. journal1, 2021, 28(4): 380-384. |
[2] |
Zhang Qi, Du Zeyu, Chen Yimin, Zhu Shuming, Lin Zhuochen, Ge Qi, Gu Jing, Zhang Jinxin. . Exploration of WeChat platform for the learning of medical statistics in teaching practice[J]. journal1, 2020, 27(6): 558-560. |
[3] |
Cheng Hui, Lin Binbin, Sun Hongpeng.. The SAS macro program that calculate 10-year cardiovascular risk using Framingham, UKPDS and ASCVD risk scores[J]. journal1, 2019, 26(6): 401-403. |
[4] |
Li Ning, Ji Wei, Yu Yanfeng, Han Hangtao, Fan Mingsuo, Zhang Liang.. Application of SAS macro program in sorting data about time stratified casecrossover design [J]. journal1, 2019, 26(3): 175-178. |
[5] |
. [J]. journal1, 2018, 25(3): 233-234. |
|
|
|
|