|
|
Research on nursing human resource prediction based on GM (1,1) model during the 14th Five-Year Plan Period in Shaoxing |
Zhang Chunxia, Ruan Weiliang, Lin Jianchao |
Shaoxing Second Hospital, Shaoxing 312000, China |
|
|
Abstract Objective To predict the regional nursing and health human resources with the use of GM (1,1) model by taking the prediction of the number of nurses per thousand permanent residents as an example, in order to provide decision support for the health management department.Methods The number of registered nurses per thousand resident population in Shao-xing from 2011 to 2020 was collected, and the GM(1,1) model was used to predict and analyze the demand for regional nurses.Results The number of nurses per thousand resident population in the region predicted by GM (1,1) model showed an upward trend in the next three years. The fitting error between the predicted value and the actual value was small, and the prediction accuracy was excellent (C=0.231, α=-0.066). According to the model, the number of registered nurses per 1 000 resident population in Shaoxing predicted from 2021 to 2023 will reach 3.72, 3.97, and 4.25, respectively.Conclusion The GM(1,1) model can fit the demand changes for regional nursing human resources in time series data, and can provide a basis for scientific and rational allocation of regional health human resources.
|
Received: 22 February 2022
|
|
|
|
[1]国家卫生计生委.关于印发医疗机构设置规划指导原则(2016—2020年)的通知[EB/OL].(2016-07-21)[2022-04-15].http://www.gov.cn/xinwen/2016-08/16/content_5099736.htm.
[2]陈青山,王声湧,迟桂波,等.应用EXCEL完成性病GM模型的预测和评价[J].疾病控制杂志,2003,7(5):451-453.DOI:10.3969/j.issn.1674-3679.2003.05.026.
[3]林建潮.灰色预测模型在Excel中的实现及运用[J].中国医院统计,2021,28(3):286-288.DOI:10.3969/j.issn.1006-5253.2021.03.021.
[4]李红艳,耿婷婷.GM(1,1)灰色模型在上海市医院诊疗人次预测中的应用[J].现代医院管理,2019,17(6):26-28.DOI:10.3969/j.issn.1672-4232.2019.06.007.
[5]陈青山,顾大勇.Excel统计分析[M].广州:暨南大学出版社,2012:267.
[6]李望晨,张利平,孔雨佳,等.我国妇幼死亡率GM(1,1)与线性回归预测模型研究[J].中国卫生统计,2010,27(4):366-368.DOI:10.3969/j.issn.1002-3674.2010.04.010.
[7]林建潮,徐乐,应鉴林,等.灰色模型方法在艾滋病发病率预测中的应用[J].中国医院统计,2016,23(5):349-350.DOI:10.3969/j.issn.1006-5253.2016.05.009.
[8]吴爱平,陈锦华,黄琳.灰色模型预测福建省2015年卫生床位数分析[J].西南国防医药,2010,20(5):551-552.DOI:10.3969/j.issn.1004-0188.2010.05.040.
[9]刘丽彬,陈小燕.基于灰色GM(1,1)模型对我国糖尿病患者死亡趋势预测[J].预防医学情报杂志,2021,37(1):130-135.
[10]相静,孔杨,徐天和.基于灰色系统GM(1,1)模型的山东省卫生总费用预测研究[J].中国卫生统计,2016,33(4):653-656.
[11]胡伟萍,朱盈颖,冯斌.浙江省护理人力资源配置现状及其公平性评价[J].中国护理管理,2013,13(12):42-45.DOI:10.3969/j.issn.1672-1756.2013.012.014.
[12]陆艳,金静芬.我国护理人力资源配置公平性的研究进展[J].护理与康复,2015,14(10):916-918.DOI:10.3969/j.issn.1671-9875.2015.10.005. |
[1] |
Sang Quanhong, Xu Peiwen. Prediction of hospital outpatient visits based on time series model[J]. journal1, 2022, 29(1): 25-28. |
[2] |
Zheng Shi, Mei Youying, Wang Yihan, Pan Ruoling, Nan Xiaoling. Application of random forest model and logistic regression model in predicting arteriovenous fistula dysfunction in maintenance hemodialysis patients[J]. journal1, 2021, 28(6): 485-490. |
[3] |
Zhang Yidun, Tong Yiqi, Huang Shijie, Huang Siying, Zhuang Fuzhen. Construction and evaluation of a statistical model for COVID-19 imported cases in Xiamen[J]. journal1, 2021, 28(6): 513-517. |
[4] |
Zheng Jia, Ke Meifang, Xu Tianyan. Construction of risk prediction model for abnormal renal function caused by antibiotics in elderly inpatients[J]. journal1, 2021, 28(5): 405-408. |
[5] |
Zheng Shu, Zhou Peimin,lü Zhenye, Fu Xiangshang, Feng Rui. Establishment and verification of a nomogram of postoperative de lirium in elderly patients undergoing thoracic surgery[J]. journal1, 2021, 28(4): 305-310. |
[6] |
Zhou Chaohua, Xia Xiaoqiong, Wu Xiaoyun, Peng Cheng, Ye Xiufeng. Study on the prediction of health human resources in Shenzhen based on the grey regression coupling model[J]. journal1, 2021, 28(3): 269-273. |
|
|
|
|