|
|
Trend change and prediction of nosocomial infection prevalence in China based on grey GM (1,1) model |
Jiang Xuejin1, Li Yang2, Ding Honghong3,Lü Min1,Sun Jihua1 |
1 Binzhou Medical University Hospital, Binzhou 256603, China;
2 Binzhou Center for Disease Control and Prevention, Binzhou 256603, China;
3 Binzhou Maternal and Child Health Hospital, Binzhou 256603, China |
|
|
Abstract Objective To understand the trend of nosocomial infection prevalence in China, and to predict the nosocomial infection prevalence in hospitals of different scales in China with the gray GM (1,1) model, so as to provide data support and new ideas for prevention and control of nosocomial infection.Methods Descriptive epidemiological method was used to analyze the trend of nosocomial infection prevalence in China. The grey GM (1,1) model was constructed with data on nosocomial infection prevalence in China from 2008 to 2016, and the model was validated with data from 2018 to 2020. The constructed grey GM (1,1) model was used to predict the prevalence of nosocomial infection in China from 2022 to 2024.Results The prevalence of nosocomial infection in China showed a downward trend. The prevalence of nosocomial infection increased with the increase of hospital scales. The grey GM (1,1) model for the prevalence of nosocomial infection has good accuracy and high fitting effect. In 2024, the prevalence of nosocomial infection in China, in hospitals with<300 beds, in hospitals with 300-599 beds, in hospitals with 600-899 beds, and in hospitals with≥ 900 beds can be reduced to 1.00%, 0.49%, 0.90%, 1.13%, and 2.05%, respectively.Conclusion The prevention and control effect of nosocomial infection in China is obvious, and the grey GM (1,1) model has a good prediction effect on the prevalence of nosocomial infection in China.
|
Received: 26 December 2023
|
|
|
|
[1]吕林芳,张汉阳.2020年北京市某三甲医院医院感染直接经济损失分析[J].中华医院感染学杂志,2023,33(6):933-937.
[2]王续晶,姚雪,张玉君,等.老年心脏瓣膜病患者瓣膜置换术后医院感染危险因素及经济负担[J].中华医院感染学杂志,2022,32(21):3282-3286.
[3]刘思峰.灰色系统理论及其应用[M].9版.北京:科学出版社,2021.
[4]徐国祥.统计预测和决策[M].6版.上海:上海财经大学出版社,2023.
[5]程龙慧,任琼琼,肖培,等.我国常见细菌耐药趋势预测研究:基于灰色GM(1,1)模型[J].中国感染控制杂志,2022,21(12):1164-1170.DOI: 10.12138/j.issn.1671-9638.20223282.
[6]彭振仁,韦洁,黄秀宁,等.灰色模型GM(1,1)在广西出生缺陷预测中的应用[J].实用医学杂志,2022,38(11):1378-1384.DOI: 10.3969/j.issn.1006-5725.2022.11.014.
[7]蔡红霞,刘潇霞,张文彬.2011—2016年中国恶性肿瘤发病和死亡趋势分析及GM(1,1)模型预测[J].现代肿瘤医学,2023,31(5):931-936.DOI: 10.3969/j.issn.1672-4992.2023.05.028.
[8]吴岚怡,王前.基于GM(1,1)模型我国基本医疗保险基金结余预测分析[J].中国卫生经济,2021,40(9):33-38.
[9]陈彤,刘玉琢,陈倩,等.基于灰色预测GM(1,1)模型山东省卫生人力资源变化趋势研究[J].卫生软科学,2023,37(3):59-62.DOI: 10.3969/j.issn.1003-2800.2023.03.013.[10]李华,杨逸飞,张晓果,等.基于GM(1,1)模型的河南省GDP预测研究[J].河南城建学院学报,2023,32(5):98-103.DOI: 10.14140/j.cnki.hncjxb.2023.05.015.
[11]刘瑞祥,陶秋香,刘晓朋,等.基于SBAS-InSAR与GM(1,1)模型的张博线采空区地表形变监测[J]. 学技术与工程,2023,23(25):10680-10687.
[12]卫生部.医院感染监测规范:WS/T 312—2009[S].北京:人民卫生出版社,2009.
[13]周卫青,赵委阳,禇雅莹,等.新冠肺炎疫情期与疫情前儿科住院患儿医院感染的发生季度、年龄段和发生部位的比较[J].中国消毒学杂志,2022,39(5):344-346.
[14]陶俊杰,齐家玮,刁正敏,等.江西省某三甲医院新冠肺炎疫情防控期间医院感染现状调查[J].中华医院感染学杂志,2021,31(24):3695-3698.DOI: 10.11816/cn.ni.2021-211359.
[15]张磊,唐婷,杨滢,等.云南省203家医疗机构医院感染横断面调查分析[J].中国消毒学杂志,2022,39(6):452-455.DOI: 10.11726/j.issn.1001-7658.2022.06.015. |
[1] |
Du Yanhua, Zhu Hongting. Risk prediction model for early diabetic kidney disease constructed based on BP neural network algorithm[J]. journal1, 2024, 31(2): 95-101. |
[2] |
Wen Fudong,Zhao Binyu,Su Yue,Wang Yupeng. Prediction of the number of brucellosis cases in China based on prophet model[J]. journal1, 2024, 31(1): 7-10. |
[3] |
Zhu Sijin,Sun Cong,Chu Tianci,Jin Xiaoxiang,Shao Xiao,Wang Yuelei,Hu Naibao. Epidemiological characteristics and trend prediction of pulmonary tuberculosis from 2012 to 2022 in Yantai [J]. journal1, 2024, 31(1): 35-40. |
[4] |
Xu Qing,Yu Bing,Zhou Peimin,Dai Shenjie,Dong Xiaomin. Construction of interpretable prediction model for lower limb deep vein thrombosis in patients undergoing total hip arthroplasty based on machine learning and SHAP[J]. journal1, 2024, 31(1): 11-18. |
[5] |
Liang Danyan,Zhang Feifei,Liu Qian,Cao Yang,Li Chenhao. Prediction of hospital ultrasonic examination workload based on ARIMA model[J]. journal1, 2023, 30(6): 436-439. |
[6] |
Zhang Juanjuan,Zhao Yan,Xu Wang,Qiu Fangyuan,Xu Jianqiang. Prediction and evaluation model of diabetic retinopathy based on multiple indicators[J]. journal1, 2023, 30(6): 401-407. |
|
|
|
|