|
|
Influencing factors of hospitalization expenses of serious illness based on quantile regression |
Liu Pei1, Zhong Shiyang2, Guo Wei3, Lü Yipeng4, Tang Yuanjie5 |
1 Department of Mathematic & Physics, Naval Medical University, Shanghai 200433, China;
2 Outpatient Department, Jiangsu Corps Hospital of Jiangsu of Armed Police Forces, Yangzhou 225003, China;
3 Department of Health Statistics, Naval Medical University, Shanghai 200433, China;
4 School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
5 Jiangsu Corps Hospital of Jiangsu of Armed Police Forces, Yangzhou 225003, China. |
|
|
Abstract Objective To analyze the composition of hospitalization expenses, explore the related influencing factors and provide policy suggestions. Methods Inpatient data of medical expenses in a tertiary hospital in Yangzhou City, Jiangsu Province from 2016 to 2019 were used, and Stata 16 software was used to analyze the composition of inpatient medical expenses. On the basis of single factor analysis, a quantile regression model of inpatient medical expenses was constructed. Results Mean hospitalization cost of serious illness was 34 860 yuan, and the proportion of drug cost decreased by 8.94% over four years. Univariate analysis showed that the influencing factors of hospitalization expenses included age (χ2=63.467, P<0.001), marital status (Z=-4.305, P<0.001), source of patients (Z=-10.555, P<0.001), identity (Z=-4.207, P<0.001), way of payment (Z=-14.287, P<0.001), hospitalization days (χ2=1 930.540, P<0.001), operation (Z=-17.149,P<0.001), curative effects (χ2=49.104,P<0.001) and hospitalization times (χ2=111.937, P<0.001). The results of quantile regression model showed that way of payment, hospitalization expenses, operation, and hospitalized times had an impact on different quantile points of hospitalization expenses. Conclusion Compared with the traditional regression model, quantile regression model is more robust. Increasing the coverage of medical insurance, and carrying out health education can not only promote the utilization rate of medical insurance, but also reduce the medical expenses.
|
Received: 29 November 2021
|
|
|
|
[1]陈默,蔡苗,黄阿红,等.基于Kmeans聚类与支持向量机的大病患者住院费用影响因素与控制策略研究[J].中国医院管理,2019,39(5):45-47.
[2]田珍都,刘泽升.我国大病保险制度存在的问题和对策建议[J].行政管理改革,2016(2):54-58.DOI:10.14150/j.cnki.1674-7453.2016.02.013.
[3]李华,陈迪.疾病风险全保障程度与筹资水平测算:以中国中等发达地区某省N市为例[J].社会科学辑刊,2016(1):89-98.
[4]刘畅,周绿林,张心洁,等.重大疾病患者住院医疗费用影响因素实证研究[J].中国医院管理,2017,37(5):14-17.
[5]扬州市人力资源和社会保障局. 关于印发《扬州市区职工大病补充保险实施意见》的通知:扬人社〔2015〕144号[R/OL].(2015-05-25)[2021-11-29]. http://www.modernbeauty.com.cn/Html/News/Articles/1249.html.
[6]扬州市人力资源和社会保障局. 关于印发《扬州市城乡居民基本医疗保险实施细则》的通知:扬人社〔2017〕345号[R/OL].(2017-12-27)[2021-11-29]. http://www.yizheng.gov.cn/yizheng_ybj/sjtc/202002/867c6b01905c4778a188ae5e974a432b.shtml.
[7]陈丽红,王露岚.某高校附属医院腹腔镜胆囊切除术病种费用及影响因素分析[J].中国卫生统计,2021,38(2):300-302.DOI:10.3969/j.issn.1002.3674.2021.02.037.
[8]张雪玉,王莉,罗璇,等.基于面板分位数回归的老年糖尿病足患者治疗费用影响因素分析[J].中国卫生统计,2019,36(6):893-895.
[9]王纯杰,董小刚,陈嘉,等.基于分位数回归的长春市职工工资水平的分析[J].长春工业大学学报(自然科学版),2010,31(4):367-373.DOI:10.15923/j.cnki.cn22-1382/t.2010.04.023.
[10]李育安.分位数回归及应用简介[J].统计与信息论坛,2006,21(3):35-38.DOI:10.3969/j.issn.1007-3116.2006.03.008.
[11]陈建宝,丁军军.分位数回归技术综述[J].统计与信息论坛,2008,23(3):89-96.DOI:10.3969/j.issn.1007-3116.2008.03.018.
[12]郑承利,陈灯塔.中国股市截面收益率再研究:分位数回归方法[J].南方经济,2006(1):61-71.DOI:10.3969/j.issn.1000-6249.2006.01.007.
[13]涂涛涛,张建华.外商直接投资与技术外溢效应:基于分位数回归法[J].南方经济,2007(7):37-46.DOI:10.3969/j.issn.1000-6249.2007.07.003.
[14]国家卫生健康委员会.中国卫生健康统计年鉴:2020[M].北京:中国协和医科大学出版社,2020.
[15]易贤楚,刘朋炯,侯林虎.某医院1968名住院军人患者疾病构成分析[J].解放军医院管理杂志,2019,26(6):542-544.DOI:10.16770/j.cnki.1008-9985.2019.06.012.
[16]朱丽华,殷倩,贺格格,等.某军队医院军人训练伤住院情况调查[J].解放军医院管理杂志,2020,27(7):621-623.DOI:10.16770/J.cnki.1008-9985.2020.07.007.
[17]苏飞月,符美玲,谭慭莘,等.基于分位数回归与决策树模型的跌倒患者住院费用影响因素分析[J].中国卫生统计,2021,38(1):67-72.DOI:10.3969/j.issn.1002-3674.2021.01.018.
[18]扬州市统计局. 2019年扬州市国民经济和社会发展统计公报[R/OL].(2020-04-15)[2021-11-29]. http://tjj.yangzhou.gov.cn/yztjj/tjfx1/202004/9823a144ca8e4a7cbff829e01b6b9447.shtml.
[19]江苏省统计局. 2019年江苏省国民经济和社会发展统计公报[R/OL].(2020-03-04)[2021-11-29]. http://tj.jiangsu.gov.cn/art/2020/3/4/art_4576_8995203.html.
[20]国家统计局.中华人民共和国2019年国民经济和社会发展统计公报[M].北京:中国统计出版社,2020.
[21]国家统计局.中国统计年鉴:2021[M].北京:中国统计出版社,2021.
[22]宋萍,李准,徐雨晨,等.基于多元回归分析的住院费用影响因素研究[J].重庆医学,2018,47(30):3923-3927.DOI:10.3969/j.issn.1671-8348.2018.30.020. |
[1] |
Shang Di, Zou Fang. Analysis on the influencing factors of inpatient expenses for acute myocardial infarction in a tertiary hospital from 2018 to 2020[J]. journal1, 2022, 29(1): 47-50. |
[2] |
Wu Li, Lü Zhijie, Lu Hanti, Huang Sijia, Zhou Penglei. Research on DRGs grouping for patients with chronic obstructive pulmonary disease based on quantile regression and decision tree model[J]. journal1, 2022, 29(1): 42-46. |
[3] |
Wang Zhouqiang, Wu Xiaoqin. Research on the incentive effect of hospitalization expenses of lung cancer patients based on factor analysis[J]. journal1, 2022, 29(1): 29-31. |
[4] |
. Application of quartile regression method in influencing factor analysis for inpatient cost of adult leukemia[J]. journal1, 2021, 28(6): 518-522. |
[5] |
Xue Junjun, Wang Heng, Li Niannian. Path analysis on the factors influencing hospitalization expenses of the patients undergoing hemorrhoidectomy[J]. journal1, 2021, 28(5): 416-419. |
[6] |
Zhang Hongcheng, Li Shengli, Xu kai. Study on the standard hospitalization cost of insurance patients with digestive system based on diagnosis related groups[J]. journal1, 2021, 28(5): 426-428. |
|
|
|
|