[1]MINHYEOK L, WON H S, JUNHEE S. Prediction of survival risks with adjusted gene expression through risk-gene networks[J].Bioinformatics (Oxford, England),2019,35(23):4898-4906.
[2]LOU X Y, CHEN G B, Yan L, et al. A Generalized Combinatorial Approach for Detecting Gene-by-Gene and Gene-by-Environment Interactions with Application to Nicotine Dependence [J].The American Journal of Human Genetics,2007,80(6):1125-1137.
[3]CHRISTOS D, KUMAR H S, LUCA H, et al. Network-based integration of multi-omics data for prioritizing cancer genes[J].Bioinformatics (Oxford, England),2018,34(14):2441-2448.
[4]ASHAR A, HOLGER F. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering[J]. Bioinformatics (Oxford, England),2017,33(22):3558-3566.
[5]PIETRO C, ANGELA S, ROBERTO T. Robust clustering of noisy high-dimensional gene expression data for patients subtyping[J].Bioinformatics (Oxford, England),2018,34(23):4064-4072.
[6]ZHANG W, OTA T, SHRIDHAR V, et al. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment [J].PLoS Comput Biol,2013,9(3):e1002975.
[7]HYUNHWAN J,SANGSEOB L,KYUBUM W, et al. Integrative network analysis for survival-associated gene-gene interactions across multiple genomic profiles in ovarian cancer [J].Journal of ovarian research,2015,8:42.
[8]VER-SSIMO A, OLIVEIRA A L, SAGOT M F, et al. DegreeCox–a network-based regularization method for survival analysis[J].BMC bioinformatics,2016,17(16):449.
[9]VAM F S, UNG M H, LUO S, et al. Integrative analysis of survivalassociated gene sets in breast cancer[J].BMC medical genomics,2015,8:11.
[10]张秀秀. 基于(I)SIS的变量选择方法及其在极高维数据生存分析中的应用[D].太原:山西医科大学,2013.
[11]HUMMEL M, BENTINK S,BERGER H, et al. A biologic definition of Burkitt′s lymphoma from transcriptional and genomic profiling. N Engl J Med 2006 Jun 8;354(23):2419-2430.
[12]RICHTER J, SCHLESNER M, HOFFMANN S, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing[J]. Nat Genet 2012,44(12):1316-1320.
[13]FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J].Journal of the American statistical Association,2001,96(456):1348-1360.
[14]GOEMAN J J. L1 penalized estimation in the Cox proportional hazards model[J].Biometrical journal,2010,52(1):70-84.
[15]FAN J, LV J. Sure independence screening for ultrahigh dimensional feature space[J].Journal of the Royal Statistical Society: Series B (Statistical Methodology),2008,70(5):849-911.
[16]SEOK J, DAVIS R W, XIAO W. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data[J]. PLoS One,2015,10(5):e0122103.
[17]闫丽娜. 惩罚COX模型和弹性网技术在高维数据生存分析中的应用[D].太原:山西医科大学,2011.
[18]BARABSI A L. Scalefree networks: a decade and beyond[J]. science,2009,325(5939):412-413.
[19]ZHANG K K, XIANG M, ZHOU L, et al. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation[J].Human molecular genetics,2016,25(6):1140-1151.
[20]YIP D KS, CHAN L L, PANG I K, et al. A network approach to exploring the functional basis of genegene epistatic interactions in disease susceptibility[J].Bioinformatics,2018,34(10):1741-1749.
[21]PEARL J. Models, reasoning and inference[J].Cambridge: Cambridge University Press,2000.
[22]PENG J, WANG P, ZHOU N, et al. Partial correlation estimation by joint sparse regression models[J].Journal of the American Statistical Association,2009,104(486):735-746.
[23]TANG H, XIAO G, BEHRENS C, et al. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients[J].Clinical cancer research,2013,19(6):1577-1586.
[24]WU L, CANDILLE S I, CHOI Y, et al. Variation and genetic control of protein abundance in humans[J].Nature,2013,499(7456):79-82.
[25]张秀秀,王慧,田双双,等.高维数据回归分析中基于LASSO的自变量选择[J].中国卫生统计,2013,30(6):922-926. |