|
|
Prediction of the number of discharged patients in a tertiary referral hospital in Guangzhou with exponential smoothing model |
Liu Xiaoyu, Chen Liya, Chen Pingyan |
Department of Biostatistics, Southern Medical University, Guangzhou 510515, China; Center for Drug Evaluation, CFDA |
|
|
Abstract Objective To construct a model based on the number of past dischared patients by month and to predict the number of discharged patients in a tertiary referral hospital. Methods We predicted and analyzed time series of discharged patients and monthly discharged patients per bed (monthly discharged patients/the bed number at the beginning of the year) respectively. Then, we validated the results by true value and predictive value of discharged patients in 2014. Results In model ARIMA(0,1,1)(1,1,1)12, the mean absolute percentage error of monthly discharged patients was 14.49% and the mean absolute percentage error of monthly discharged patients per bed was 7.75%. We selected the final model on the basis of mean absolute percentage error from true value and predictive value. So the autoregressive moving smoothing model was superior to the exponential smoothing model. The best fitting model was Winters′s multiplicative model which directly predicted monthly discharged patients with the mean absolute percentage error of 2.96%, better than the Winters′s additive model of monthly discharged patients per bed with that of 6.62%. We predicted the number of yearly discharged patients in 2015 would be 104 248 with Winters′s multiplicative model of monthly discharged patients and 95% CI between 89 109 and 119 386. Conclusion Using the expert modeler of SPSS software to construct Winters′s multiplicative predictive model is easy to operate and the predictive effect is relatively better.
|
Received: 09 September 2015
|
|
|
|
[1] 刘艳红.某医院出院人次季节变动规律和预测分析[J].中国医学创新,2012,9(4):68. [2] 黄利卷,梁学柱.应用自回归移动平均模型预测医院出院人数[J].中国病案,2014,15(9):35-37. [3] THOMAS GA, WILLIAMS ED. Chemobyl thyroid tumor tissue and nucleic acid bank[J]. Radiat Ras, 2001,156(3):333. [4] 徐艳莉,王黎.用最小二乘法预测医院住院人数[J].中国医院统计,2008,15(1):62-63. [5] 于亚滨.医院门急诊、住院病人量预测及变动趋势分析[J].中国病案,2005,6(6):43-45. [6] 曹阳,徐峰.利用直线回归方程预测医院门急诊人数、出院人数、住院手术人数[J].中国医院统计,2013,20(5):354-355. [7] 肖玉侠,张颖.用线性趋势季节模型预测出院人次[J].中国卫生统计,2008,25(3):322. [8] 杨玲.运用最小二乘法预测医院出院人数[J].医学信息,2013,26(2):552. [9] 赵琳,肖蓓.门急诊量和出院人数预测线性回归模型的建立和应用[J].中国病案,2014,15(11):39-40. [10]格雷特,李洪成.时间序列预测实践教程[M].北京:清华大学出版社,2012:11. [11]陈平雁,黄浙明.SPSS10.0统计软件高级应用教程[M].北京:人民军医出版社,2004:161-190. [12]裘祖雄,董新煜.2008年出院病人数量的统计预测[J].中国病案,2010,11(2):44-45. [13]武红涛.ARIMA模型在医院出院患者预测中的应用[J].解放军医院管理杂志,2009,16(1):21-23. [14]向前,陈平雁.预测医院门诊量的ARIMA模型构建及应用[J].南方医科大学学报,2009,29(5):1076-1078. [15]周忠彬,吕红梅,邹郢.ARIMA干预模型在医院门诊量预测中的应用[J].中国医院统计,2008,15(2):110-112. [16]李运明.吴凡.郑驰,等.某三甲综合医院门诊量ARIMA预测分析[J].中国病案,2014,15(8):53-55. [17]张红芬.用最小二乘法预测医院出院人次[J].中国医院统计,2014,21(1):67-68. [18]杜强,贾丽艳.SPSS统计分析从入门到精通[M].北京:人民邮电出版社,2009:377-395. [19]王舟强,吴小琴.ARIMA乘积季节模型在出院人数预测中的应用[J].中国病案,2015,16(2):73-76. |
[1] |
Zhang Qi, Liu Lingchong, Li Guijie, Song Gesheng, Shi Hao, Wang Bin. Prediction of coronary artery stenosis with logistics model[J]. journal1, 2017, 24(2): 105-107. |
[2] |
. [J]. journal1, 2017, 24(2): 148-149. |
[3] |
Liu Guozhu. Comparative study of ARIMA model and GM (1,1) model in hospital outpatient service forecast[J]. journal1, 2017, 24(1): 5-8. |
[4] |
. [J]. journal1, 2016, 23(5): 349-350. |
[5] |
Lin Yilan, Chen Min, Zhang Qionghua, Chi Jiahuang. Prediction of mortality and years of life lost due to leukemia cancer in residents in Xiamen[J]. journal1, 2016, 23(3): 161-163. |
[6] |
. [J]. journal1, 2016, 23(3): 210-188. |
|
|
|
|