[1]NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics': Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999,29(11):1181-1189. DOI: 10.1080/004982599238047.
[2]NAM M, JO S R, KIM Y C, et al. UPLC-QTOF-MS-based metabolomics and antioxidant capacity of Codonopsis lanceolata from different geographical origins[J]. Foods, 2023,12(2):267. DOI: 10.3390/foods12020267.
[3]PEARSON K. LIII. On lines and planes of closest fit to systems of points in space[J]. Lond Edinb Dublin Philos Mag J Sci, 1901,2(11):559-572. DOI: 10.1080/14786440109462720.
[4]MI J X, ZHANG Y N, LAI Z H, et al. Principal Component Analysis based on Nuclear norm Minimization[J]. Neural Netw, 2019,118:1-16. DOI: 10.1016/j.neunet.2019.05.020.
[5]TSUYUZAKI K, SATO H, SATO K, et al. Benchmarking principal component analysis for large-scale single-cell RNA-sequencing[J]. Genome Biol, 2020,21(1):9. DOI: 10.1186/s13059-019-1900-3.
[6]ZHENG H, ZHU Y J, SHAO X G, et al. Distinct metabolic signatures of hormone-sensitive and castration-resistant prostate cancer revealed by a 1H NMR-based metabolomics of biopsy tissue[J]. J Proteome Res, 2020,19(9):3741-3749. DOI: 10.1021/acs.jproteome.0c00282.
[7]YANG B, ZHANG C, CHENG S, et al. Novel metabolic signatures of prostate cancer revealed by 1H-NMR metabolomics of urine[J]. Diagnostics, 2021,11(2):149. DOI: 10.3390/diagnostics11020149.
[8]WARD J H. Hierarchical grouping to optimize an objective function[J]. J Am Stat Assoc, 1963,58(301):236-244. DOI: 10.2307/2282967.
[9]PETEGROSSO R, LI Z L, KUANG R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data[J]. Brief Bioinform, 2020,21(4):1209-1223. DOI: 10.1093/bib/bbz063.
[10]KUDAL P, PATNAIK A, DAWAR S, et al. Segmentation of OECD countries on the basis of selected global environmental indicators using k-means non-hierarchical clustering[J]. Environ Sci Pollut Res Int, 2024,31(7):10334-10345. DOI: 10.1007/s11356-023-26679-x.
[11]ZOU Z H, HUA K, ZHANG X G. HGC: Fast hierarchical clustering for large-scale single-cell data[J]. Bioinformatics, 2021,37(21):3964-3965. DOI: 10.1093/bioinformatics/btab420.
[12]CHENG X Q, YAN C, JIANG H, et al. scHOIS: Determining cell heterogeneity through hierarchical clustering based on optimal imputation strategy[J]. IEEE/ACM Trans Comput Biol Bioinform, 2023,20(2):1431-1444. DOI: 10.1109/TCBB.2022.3203592.
[13]HAN Y Z, MA Z T, ZHOU M X, et al. Metabolomic profiling for drug-induced liver injury with autoantibodies[J]. Int Immunopharmacol, 2022,111:109084. DOI: 10.1016/j.intimp.2022.109084.
[14]MACQUEEN J. Some methods for classification and analysis of multivariate observations[J]. Berkeley Symp Math Stat Probab, 1967: 1(14): 281-297.
[15]ALAKWAA F M, SAVELIEFF M G. Bioinformatics analysis of metabolomics data unveils association of metabolic signatures with methylation in breast cancer[J]. J Proteome Res, 2020,19(7):2879-2889. DOI: 10.1021/acs.jproteome.9b00755.
[16]ROUMANI A M, MADKOUR A, OUZZANI M, et al. BioNetApp: An interactive visual data analysis platform for molecular expressions[J]. PLoS One, 2019,14(2):e0211277. DOI: 10.1371/journal.pone.0211277.
[17]URPI-SARDA M, ALMANZA-AGUILERA E, LLORACH R, et al. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants[J]. Diabetes Metab, 2019,45(2):167-174. DOI: 10.1016/j.diabet.2018.02.006.
[18]ST-HLE L, WOLD S. Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study[J]. J Chemom, 1987,1(3):185-196. DOI: 10.1002/cem.1180010306.
[19]AMINU M, AHMAD N A. Complex chemical data classification and discrimination using locality preserving partial least squares discriminant analysis[J]. ACS Omega, 2020,5(41):26601-26610. DOI: 10.1021/acsomega.0c03362.
[20]LEE L C, LIONG C Y, JEMAIN A A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps[J]. Analyst, 2018,143(15):3526-3539. DOI: 10.1039/c8an00599k.
[21]KANG C D, ZHANG Y Y, ZHANG M Y, et al. Screening of specific quantitative peptides of beef by LCMS/MS coupled with OPLS-DA[J]. Food Chem, 2022,387:132932. DOI: 10.1016/j.foodchem.2022.132932.
[22]DU Y, FAN P Z, ZOU L H, et al. Serum metabolomics study of papillary thyroid carcinoma based on HPLC-Q-TOF-MS/MS[J]. Front Cell Dev Biol, 2021,9:593510. DOI: 10.3389/fcell.2021.593510.
[23]MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bull Math Biophys, 1943,5(4):115-133. DOI: 10.1007/BF02478259.
[24]LEE M Y, HU T. Computational methods for the discovery of metabolic markers of complex traits[J]. Metabolites, 2019,9(4):66. DOI: 10.3390/metabo9040066.
[25]ALSHAMMARI F, ALAM M B, NAZNIN M, et al. Optimization, metabolomic analysis, antioxidant potential andDepigmenting activity of polyphenolic compounds fromUnmature ajwa date seeds (Phoenix dactylifera L.) using ultrasonic-assisted extraction[J]. Antioxidants, 2024,13(2):238. DOI: 10.3390/antiox13020238.
[26]TSIGELNY I F. Artificial intelligence in drug combination therapy[J]. Brief Bioinform, 2019,20(4):1434-1448. DOI: 10.1093/bib/bby004.
[27]LIU J, LIU L X, GUO W, et al. A new methodology for sensory quality assessment of garlic based on metabolomics and an artificial neural network[J]. RSC Adv, 2019,9(31):17754-17765. DOI: 10.1039/c9ra01978b.
[28]TOUSSAINT P A, LEISER F, THIEBES S, et al. Explainable artificial intelligence for omics data: A systematic mapping study[J]. Brief Bioinform, 2023,25(1):bbad453. DOI: 10.1093/bib/bbad453.
[29][KG*2]〖ZK(]CHEN N, WANG H B, WU B Q, et al. Using random forest to detect multiple inherited metabolic diseases simultaneously based on GCMS urinary metabolomics[J]. Talanta, 2021,235:122720. DOI: 10.1016/j.talanta.2021.122720.
[30]ABDELMOULA W M, STOPKA S A, RANDALL E C, et al. massNet: Integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation[J]. Bioinformatics, 2022,38(7):2015-2021. DOI: 10.1093/bioinformatics/btac032.
[31]CORTES C, VAPNIK V. Support-vector networks[J]. Mach Learn, 1995,20(3):273-297. DOI: 10.1007/BF00994018.
[32]BARBERIS E, KHOSO S, SICA A, et al. Precision medicine approaches with metabolomics and artificial intelligence[J]. Int J Mol Sci, 2022,23(19):11269. DOI: 10.3390/ijms231911269.
[33]HOU X W, WANG G L, SU G Q, et al. Rapid identification of edible oil species using supervised support vector machine based on low-field nuclear magnetic resonance relaxation features[J]. Food Chem, 2019,280:139-145. DOI: 10.1016/j.foodchem.2018.12.031.
[34]SARKAR S, MALI K. Firefly-SVM predictive model for breast cancer subgroup classification with clinicopathological parameters[J]. Digit Health, 2023,9:20552076231207203. DOI: 10.1177/20552076231207203.
[35]ZHOU S L. Sparse SVM for sufficient data reduction[J]. IEEE Trans Pattern Anal Mach Intell, 2022,44(9):5560-5571. DOI: 10.1109/TPAMI.2021.3075339.
[36]TAKAHASHI Y, UEKI M, YAMADA M, et al. Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection[J]. Transl Psychiatry, 2020,10(1):157. DOI: 10.1038/s41398-020-0831-9.
[37]ZHENG H, ZHENG P, ZHAO L C, et al. Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine[J]. Clin Chim Acta, 2017,464:223-227. DOI: 10.1016/j.cca.2016.11.039.
[38]BERGER J O. Statistical decision theory and Bayesian analysis[M]. 2nd ed.[S.l.]: Springer Science & Business Media,1985.
[39]FANG S N, LIN Z Z, ZHANG Z S, et al. Gas hydrate saturation estimates in the Muli permafrost area considering Bayesian discriminant functions[J]. J Petrol Sci Eng, 2020,195:107872. DOI: 10.1016/j.petrol.2020.107872.
[40]HUANG Z Y, KANG M M, LI G Y, et al. Predictive effect of Bayes discrimination in the level of serum protein factors and cognitive dysfunction in schizophrenia[J]. J Psychiatr Res, 2022,151:539-545. DOI: 10.1016/j.jpsychires.2022.05.004.
[41]BOBB J F, VALERI L, CLAUS HENN B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures[J]. Biostatistics, 2015,16(3):493-508. DOI: 10.1093/biostatistics/kxu058.
[42]MATTA K, LEFEBVRE T, VIGNEAU E, et al. Associations between persistent organic pollutants and endometriosis: A multiblock approach integrating metabolic and cytokine profiling[J]. Environ Int, 2022,158:106926. DOI: 10.1016/j.envint.2021.106926.
[43]HOLLAND J H. Genetic algorithms [J]. Sci Am, 1992, 267(1): 66-73.DOI:10.1038/scientificamerican0792-66.
[44]LUO J, REN R, GUO K D. The deformation monitoring of foundation pit by back propagation neural network and genetic algorithm and its application in geotechnical engineering[J]. PLoS One, 2020,15(7):e0233398. DOI: 10.1371/journal.pone.0233398.
[45]NOUTAHI E, EL-MABROUK N. GATC: A genetic algorithm for gene tree construction under the Duplication-Transfer-Loss model of evolution[J]. BMC Genomics, 2018,19(Suppl 2):102. DOI: 10.1186/s12864-018-4455-x.
[46]LIU P, EL BASHA M D, LI Y, et al. Deep evolutionary networks with expedited genetic algorithms for medical image denoising[J]. Med Image Anal, 2019,54:306-315. DOI: 10.1016/j.media.2019.03.004.
[47]MOHAMMADPOUR T, BIDGOLI A M, ENAYATIFAR R, et al. Efficient clustering in collaborative filtering recommender system: Hybrid method based on genetic algorithm and gravitational emulation local search algorithm[J]. Genomics, 2019,111(6):1902-1912. DOI: 10.1016/j.ygeno.2019.01.001.
[48]JIN H, MOSELEY H N B. Moiety modeling framework for deriving moiety abundances from mass spectrometry measured isotopologues[J]. BMC Bioinformatics, 2019,20(1):524. DOI: 10.1186/s12859-019-3096-7.
[49]MARJIT S, BHATTACHARYYA T, CHATTERJEE B, et al. Simulated annealing aided genetic algorithm for gene selection from microarray data[J]. Comput Biol Med, 2023,158:106854. DOI: 10.1016/j.compbiomed.2023.106854.
[50]BREIMAN L. Random forests[J]. Mach Learn, 2001,45:5-32. DOI: 10.1023/A:1010933404324.
[51]RHODES J S, CUTLER A, MOON K R. Geometry and accuracy-preserving random forest proximities[J]. IEEE Trans Pattern Anal Mach Intell, 2023,45(9):10947-10959. DOI: 10.1109/TPAMI.2023.3263774.
[52]WALKER A M, CLIFF A, ROMERO J, et al. Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data[J]. Comput Struct Biotechnol J, 2022,20:3372-3386. DOI: 10.1016/j.csbj.2022.06.037.
[53]KONG Y C, YU T W. forgeNet: A graph deep neural network model using tree-based ensemble classifiers for feature graph construction[J]. Bioinformatics, 2020,36(11):3507-3515. DOI: 10.1093/bioinformatics/btaa164.
[54]MOTAMEDI F, P-REZ-S-NCHEZ H, MEHRIDEHNAVI A, et al. Accelerating big data analysis through LASSO-random forest algorithm in QSAR studies[J]. Bioinformatics, 2022,38(2):469-475. DOI: 10.1093/bioinformatics/btab659.
[55]HAUSCHILD A C, LEMANCZYK M, MATSCHINSKE J, et al. Federated Random Forests can improve local performance of predictive models for various healthcare applications[J]. Bioinformatics, 2022,38(8):2278-2286. DOI: 10.1093/bioinformatics/btac065.
[56]RAZAVI-TERMEH S V, SADEGHI-NIARAKI A, SEO M, et al. Application of genetic algorithm in optimization parallel ensemblebased machine learning algorithms to flood susceptibility mapping using radar satellite imagery[J]. Sci Total Environ, 2023,873:162285. DOI: 10.1016/j.scitotenv.2023.162285.
[57]FRIEDMAN J. Stochastic gradient boosting[J]. Comput Stat \\& Data Anal, 2002,38:367-378. DOI: 10.1016/S0167-9473(01)00065-2.
[58]SU X S, BAI M Y. Stochastic gradient boosting frequency-severity model of insurance claims[J]. PLoS One, 2020,15(8):e0238000. DOI: 10.1371/journal.pone.0238000.
[59]LI B, YU Q Z, PENG L. Ensemble of fast learning stochastic gradient boosting[J]. Commun Stat Simul Comput, 2022,51(1):40-52. DOI: 10.1080/03610918.2019.1645170. |