|
|
Biosynthesis of ε-polylysine and its application in medicine field |
WANG Aixia1, WANG Xiuwen1, QIN Jiayang1*, XIE Zeping1,2, YU Bo3 |
1 School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, P.R.China; 2 Shandong International Biotechnology Park; 3 Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 |
|
|
Abstract ε-polylysine is a kind of natural amino acid polymer produced by microbial fermentation, which has a broad application prospect in food, medicine and other industries. This paper reviewed the research progress in the biosynthesis of ε-polylysine in recent years, and especially discusses the new breeding methods of ε-polylysine production strains and the application of ε-polylysine in medicine field. The aim is to provide theoretical basis for the industrial production and application development of ε-polylysine.
|
Received: 05 February 2020
|
|
|
|
|
[1] SHIMA S, SAKAI H. Polylysine produced by Streptomyces[J]. Agricultural and Biological Chemistry, 1977, 41(9):1807-1809. [2] XU Z, XU Z, FENG X, et al. Recent advances in the biotechnological production of microbial poly (ε-L-lysine) and understanding of its biosynthetic mechanism[J]. Applied Microbiology and Biotechnology, 2016, 100(15):6619-6630. [3] 齐子琦,秦子晋,黄永震,等.生物防腐剂ε-聚赖氨酸的研究进展[J].食品工业,2019,40 (10):289-293. [4] NISHIKAWA M, OGAWA K. Distribution of microbes producing antimicrobial epsilon-poly-L-lysine polymers in soil microflora determined by a novel method[J]. Applied and Environmental Microbiology, 2002, 68(7):3575-3581. [5] GENG W, YANG C, GU Y, et al. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK 660 and its heterologous expression in Streptomyces lividans[J]. Microbial Biotechnology, 2014, 7(2):155-164. [6] LIU Y J, CHEN X S, ZHAO J J, et al. Development of microtiter plate culture method for rapid screening of ε-poly-L-lysine-producing strains[J]. Applied Biochemistry and Biotechnology, 2017, 183(4):1209-1223. [7] ZENG X, ZHAO J, CHEN X, et al. Insights into the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18 for high ε-poly-L-lysine productivity[J]. Bioprocess and Biosystems Engineering, 2017, 40(12):1775-1785. [8] GUO F, ZHENG H, CHENG Y, et al. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology[J]. Letters in Applied Microbiology, 2018, 66(2):124-131. [9] XU D, WANG R, XU Z, et al. Discovery of a short-chain ε-poly-L-lysine and its highly efficient production via synthetase swap strategy[J]. Journal of Agricultural and Food Chemistry, 2019, 67(5):1453-1462. [10] BHATTACHARYA S, DINESHKUMAR R, DHANARAJAN G, et al. Improvement of ε-polylysine production by marine bacterium Bacillus licheniformis using artificial neural network modeling and particle swarm optimization technique[J]. Biochemical Engineering Journal, 2017, 126:8-15. [11] CHHEDA A H, VERNEKAR M R. Improved production of natural food preservative ε-poly-L-lysine using a novel producer Bacillus cereus[J]. Food Bioscience, 2014, 7:56-63. [12] CHHEDA A H, VERNEKAR M R. Enhancement of ε-poly-L-lysine (ε-PL) production by a novel producer Bacillus cereus using metabolic precursors and glucose feeding[J]. 3 Biotech, 2015, 5(5):839-846. [13] REN X D, CHEN X S, ZENG X, et al. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products[J]. Bioprocess and Biosystems Engineering, 2015, 38(6):1113-1125. [14] REN X D, XU Y J, ZENG X, et al. Microparticle-enhanced production of ε-poly-L-lysine in fed-batch fermentation[J]. Rsc Advances, 2015, 5(100):82138-82143. [15] XU Z, BO F, XIA J, et al. Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1[J]. Biochemical Engineering Journal, 2015, 94:58-64. [16] PAN L, CHEN X S, LIU M M, et al. Efficient production of ε-poly-L-lysine from glucose by two-stage fermentation using pH shock strategy[J]. Process Biochemistry, 2017, 63:8-15. [17] YAN P, SUN H, LU P, et al. Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione[J]. Bioprocess and Biosystems Engineering, 2018, 41(1):129-134. [18] SHIMA S, OSHIMA S, SAKAI H. Biosynthesis of ε-poly-L-lysine by washed mycelium of Streptomyces albulus No-346[J].Journal of the Agricultural Chemical Society of Japan (Japan) ,1983, 57:221-226. [19] KAWAI T, TAKAAKI K, HIRAKI J, et al. Biosynthesis of ε-poly-L-Lysine in a cell-free system of Streptomyces albulus[J]. Biochemical and Biophysical Research Communiations, 2003, 311:635-640. [20] YAMANAKA K, MARUYAMA C, TAKAGI H, et al. ε-Poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase[J]. Nature Chemical Biology, 2008, 4(12):766. [21] GENG W, YANG C, GU Y, et al. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK 660 and its heterologous expression in Streptomyces lividans[J]. Microbial Biotechnology, 2014, 7(2):155-164. [22] HAMANO Y, KITO N, KITA A, et al. ε-Poly-L-lysine peptide chain length regulated by the linkers connecting the transmembrane domains of ε-poly-L-lysine synthetase[J]. Applied and Environmental Microbiology, 2014, 80(16): 4993-5000. [23] WANG L, GAO C, TANG N, et al. Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing[J]. Scientific reports, 2015, 5:9201. [24] KITO M, TAKIMOTO R, YOSHIDA T, et al. Purification and characterization of an ε-poly-L-lysine-degrading enzyme from an ε-poly-L-lysine-producing strain of Streptomyces albulus[J]. Archives of microbiology, 2002, 178(5):325-330. [25] HAMANO Y, YOSHIDA T, KITO M, et al. Biological function of the pld gene product that degrades-poly-L-lysine in Streptomyces albulus[J]. Applied Microbiology and Biotechnology, 2006, 72(1):173-181. [26] YAMANAKA K, KITO N, IMOKAWA Y, et al. Mechanism of ε-poly-L-lysine production and accumulation revealed by identification and analysis of an ε-poly-L-lysine-degrading enzyme[J]. Applied and Environmental Microbiology, 2010, 76(17):5669-5675. [27] 谢庶洁,肖静,徐俊.微生物核糖体工程研究进展[J].微生物学报,2009,49(8):981-986. [28] WANG L, CHEN X, WU G, et al. Improved ε-poly-L-lysine production of Streptomyces sp. FEEL-1 by atmospheric and room temperature plasma mutagenesis and streptomycin resistance screening[J]. Annals of microbiology, 2015, 65(4):2009-2017. [29] 吴光耀,陈旭升,王靓,等.核糖体工程技术选育ε-糖聚赖氨酸高产菌株[J].微生物学通报,2016, 43(12):2744-2751. [30] WANG L, CHEN X, WU G, et al. Enhanced ε-poly-L-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus[J]. Bioprocess and Biosystems Engineering, 2017, 40(2):271-283. [31] 赖永勤.ε-聚赖氨酸菌种选育及合成途径的初步研究[D].成都:西南交通大学,2017. [32] 卢圣国,李霜,朱建国,等.基因组重排技术应用及进展[J].中国生物工程杂志,2010,30(7):108-111. [33] LI S, CHEN X, DONG C, et al. Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-L-lysine production[J]. Applied Biochemistry and Biotechnology, 2013, 169(1):338-350. [34] ZHOU Y P, REN X D, WANG L, et al. Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling[J]. Bioprocess and Biosystems Engineering, 2015, 38(9):1705-1713. [35] WANG L, CHEN X, WU G, et al. Genome shuffling and gentamicin-resistance to improve ε-poly-L-lysine productivity of Streptomyces albulus W-156[J]. Applied Biochemistry and Biotechnology, 2016, 180(8):1601-1617. [36] 赵俊杰,王开方,陈旭升,等.利用抗性筛选和基因组重排技术选育ε-聚赖氨酸高产菌株[J].中国油脂,2019,44(1):74-79. [37] 顾洋,李江华,堵国成,等.微生物代谢工程的研究进展和展望[J].生物产业技术,2017,(1):64-70 [38] YAMANAKA K, KITO N, KITA A, et al. Development of a recombinant ε-poly-L-lysine synthetase expression system to perform mutational analysis[J]. Journal of Bioscience and Bioengineering, 2011, 111(6): 646-649. [39] 秦加阳,王爱霞,薛宇斌,等.一株小白链霉菌基因工程菌及其在ε-聚赖氨酸生产中的应用:中国,201911198884.5 [P]. [40] HAMANO Y, NICCHU I, SHIMIZU T, et al. ε-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase[J]. Applied Microbiology and Biotechnology, 2007, 76(4):873-882. [41] XU Z, CAO C, SUN Z, et al. Construction of a genetic system for Streptomyces albulus PD-1 and improving poly (epsilon-L-lysine) production through expression of vitreoscilla hemoglobin[J]. Journal of Microbiology & Biotechnology, 2015, 25(11):1819-1826. [42] GU Y, WANG X, YANG C, et al. Effects of chromosomal integration of the vitreoscilla hemoglobin gene (vgb) and s-adenosylmethionine synthetase gene (metk) on ε-poly-L-lysine synthesis in Streptomyces albulus NK660[J]. Applied Biochemistry and Biotechnology, 2016, 178(7):1445-1457. [43] XU D, YAO H, CAO C, et al. Enhancement of ε-poly-L-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1[J]. Bioprocess and Biosystems Engineering, 2018, 41(9):1337-1345. [44] 窦源东,任志伟,孙先昌,等.一种抗菌性阳离子改性的可吸收硬脑脊膜修复材料及其制备方法与应用:中国,CN201710072953.2[P].2019-08-20. [45] 林前锋.一种聚赖氨酸复合水凝胶及其制备方法:中国,CN201810557392.X[P].2018-11-13. [46] 徐虹,王瑞,徐得磊,等.一种ε-聚赖氨酸-对羟基苯丙酸抗菌水凝胶敷料及其制备方法:中国,CN201510289971.7[P].2017-03-15. [47] 孙广炜,刘洋,张英,等.一种ε-聚赖氨酸仿生抑菌膜及其制备和应用:中国,CN201611011882.7[P].2018-05-25. [48] 惠丰立,刘开放,黄林娜,等.一种含聚赖氨酸的口腔溃疡贴膜及其制备方法:中国,CN201810028572.9[P].2018-06-01. [49] 马建民,王薇,张光义.一种梳状多聚氨基酸复合抗菌涂层及其制备方法:中国,CN201611190434.8[P].2019-08-23. [50] 申有青,吴碧寒,相佳佳,等.一种聚乙二醇-聚赖氨酸_异硫氰酸酯键合物及其作为药物载体的应用:中国,CN201810045332.X[P].2019-07-23. [51] 张静,陈佳达,冯杰.具有电荷翻转及靶向功能的聚赖氨酸纳米前药胶束及其制备和应用:中国,CN201610068619.5[P].2016-05-11. [52] 苏文全.一种具有免疫调节作用的双链聚核苷酸—ε-聚赖氨酸—硫酸聚糖复合物及其制备使用方法:中国,CN201610053971.1[P].2019-01-18. [53] 张鲁中,杨宇民,李贵才,等.载有神经营养因子的纳米微球及制备和用途:中国,CN201310662229.7[P].2015-04-15. [54] 白钢,崔庆新,侯媛媛,等.一种多用途聚赖氨酸荧光自组装纳米微球载体及其制备方法与应用:中国, CN201410391369.X[P].2017-01-18. [55] 袁晓燕,周培琼,刘波,等.一种葡聚糖 g 聚(L 赖氨酸) VAPG核酸载体及其制备方法和应用:中国,CN201710549738.7[P].2017-11-28. [56] 杨波,吕品,廖荣强,等.ε-聚赖氨酸-聚乙烯亚胺-β环糊精聚合物及其制备方法和应用:中国,CN201610307704.2[P].2018-12-14. [57] 程义云,沈湾湾,刘红梅. 一种脂环化合物修饰的高分子材料及其制备方法与应用:中国,CN201510565983.8[P].2018-12-14. [58] 戴箭,李倩倩,胡慧阳. 一种改性阳离子聚氨基酸及其制备方法和应用:中国,CN201410604796.1[P].2015-03-11. [59] ZENG X, MIAO W, WEN B, et al. Transcriptional study of the enhanced ε-poly-L-lysine productivity in culture using glucose and glycerol as a mixed carbon source[J]. Bioprocess and Biosystems Engineering, 2019, 42(4):555-566. [60] WU F, CAI D, LI L, et al. Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis[J]. Applied Microbiology and Biotechnology, 2019, 103(21-22):8799-8812. [61] BAI C, ZHANG Y, ZHAO X, et al. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces[J]. Proceedings of the National Academy of Sciences, 2015, 112(39):12181-12186. |
|
|
|