|
|
Identification of protein post-translational modificationsand application in precision medical research by mass spectrometry |
ZHOU Yizi, JIANG Wenguo* |
School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, P.R. China |
|
|
Abstract In recent years, with the development of science and technology, mass spectrometry (MS) has emerged as an innovative analytical technique. MS is suitable for a large number of analyses and is widely used in the field of protein analysis. It has become the main choice for proteomics applications with its efficiency, sensitivity, accuracy, stability and convenience. Proteomics is essential for early stage diagnosis, prognosis and monitoring of disease development. Among them, the protein post-translational modification(PTM) is an important way of regulating protein functionand. The testing of PTM is very important in the experimental process. This article reviews mass spectrometry analysis of PTM(ubiquitination, sumoylation, acetylation, glycosylation)andthe new sumoylation mass spectrometry detection method defined in our laboratory.This article also discusses the application of mass spectrometry in precision medicine.
|
Received: 22 September 2020
|
|
|
|
|
[1] LWOODS A G, SOKOLOWSKA I, WETIE A G N, et al. Mass Spectrometry for Proteomics-Based Investigation[J]. Advances in Experimental Medicine & Biology, 2014, 806(806):1-32. [2] KE M, SHEN H, WANG L, et al. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics[J].Advances in experimental medicine and biology,2016,919:345-382. [3] 耿楼,顾文莉.蛋白质的翻译后修饰与肿瘤代谢[J].生命的化学,2020,40(4): 600-606. [4] WANG R, WANG G. Protein Modification and Autophagy Activation[J].Advances in experimental medicine andbiology, 2019,1206:237-259. [5] 杨海慧,李秀颖,刘宁.蛋白质质谱分析技术的研究进展[J].智库时代,2018(36):239. [6] BILAL A, MADIHA B, ATIF N M, et al. Proteomics: Technologies and Their Applications[J]. Journal of Chromatographic Science,2017,55(2):182-196. [7] 杜鑫,苏旭,李国烈,等.超高效液相色谱-串联质谱测定猪肉中恩拉霉素残留量[J].当代畜牧,2018,431(27):35-36. [8] 何榕,山晓琳,董方圆,等.反相超效液相色谱—质谱联用分离分析食用油中的甘油三酯[J].分析化学,2015(9):1377-1382. [9] MACKLIN A, KHAN S, KISLINGER T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research[J].Clinical proteomics,2020,17(1):1-25. [10] FALCO M R D. Mass Spectrometry-Based Proteomics[J]. Fungal Genomics, 2018,1775:93-106. [11] KIM W, BENNETT E J, HUTTLIN E L, et al. Systematic and quantitative assessment of the ubiquitin-modifiedproteome[J]. Molecular cell, 2011, 44(2):325-340. [12] UDESHI N D, MERTINS P, SVINKINA T, et al. Large-scale identification of ubiquitination sites by mass spectrometry[J]. Nature Protocols, 2013, 8(10):1950-1960. [13] 林琳,罗树生,王灵珏,等.色谱与质谱联用技术在蛋白质翻译后修饰研究中的进展及应用[J].分析化学,2015(10):1479-1489. [14] BIALIK P, KATARZYNA WOZ'NIAK. SUMO proteases as potential targets for cancer therapy[J].Postepy Higieny I Medycyny Dos'wiadczalnej, 2017, 71:997-1004. [15] HENDRIKS I A, LYON D, SU D, et al. Site-specific characterization of endogenous SUMOylation across species and organs[J]. Nature Communications, 2018, 1(1):1-17. [16] 刘秀秀,张超,周怡孜,等.SUMO1T95R 点突变小鼠模型的构建、表型及应用[J].滨州医学院学报,2020,43(5):321-325. [17] KIM S C, SPRUNG R, CHEN Y, et al. Substrate and Functional Diversity of Lysine Acetylation Revealed by aProteomics Survey[J]. Molecular Cell, 2006, 23(4):607-618. [18] KUMAR C, GNAD F, NIELSEN M L, et al. Lysine Acetylation Targets Protein Complexes andCo-RegulatesMajor Cellular Functions[J]. science, 2009, 325(5942):834-840. [19] APWEILER R, HERMJAKOB H, SHARON N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database1[J].Biochimica et biophysica acta, 1999, 1473(1):4-8. [20] 何椿鹏.不同 TNFR-Fc 融合蛋白 N-糖基化结构分析及其对蛋白功能影响的初步研究[D].南宁:广西医科大学,2013. [21] SPIRO R G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology, 2002,12(4):43R-56R. [22] WIELAND F. Structure and biosynthesis of prokaryotic glycoproteins[J]. Biochimie,1988,70(11):1493-1504. [23] GEMMILL TR, TRIMBLE RB. Overview of N- and O-linked oligosaccharide structures found in various yeast species[J]. Biochimica Et Biophysica Acta General Subjects, 1999,1426:227-237. [24] KAJI H, SAITO H, YAMAUCHI Y, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometryto identify N-linked glycoproteins[J]. Nature Biotechnology, 2003, 21:667-672. [25] MADERA M, MECHREF Y, NOVOTNY M V. Combining Lectin Microcolumns with High-Resolution Separation Techniques for Enrichment of Glycoproteins and Glycopeptides[J]. Analytical Chemistry, 2005, 77(13):4081-4090. [26] ZHANG H, LI X J, MARTIN D B, et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry[J]. Nature Biotechnology, 2003, 21(6):660-666. [27] SUN, BINGYUN, RANISH, et al. Shotgun glycopeptide capture approach coupled with mass spectrometry forcomprehensive glycoproteomics[J]. Molecular & Cellular Proteomics Mcp,2007, 6(1):141-149. [28] WOLLSCHEID B, BAUSCH-FLUCK D, HENDERSON C, et al. Corrigendum: Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins[J].Nature Biotechnology,2009, 27(9):864. [29] OKUDA, TETSUYA. Western blot data using two distinct anti-O-GlcNAc monoclonal antibodies showing unique glycosylation status on cellular proteins under 2-deoxy-d-glucose treatment[J]. Data in Brief, 2017, 10(1):449-453. [30] REEVES R A, LEE A, HENRY R, et al. Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress[J]. Analytical Biochemistry, 2014,457:8-18. [31] TEO C F, INGALE S, WOLFERT M A, et al. Glycopeptide-specific monoclonal antibodies suggest new rolesfor O-GlcNAc[J]. Nature Chemical Biology, 2010, 6(5):338-343. [32] LEE M, YE A, GARDINO A, et al. Sequential application of anticancer drugs enhances cell death by rewiringapoptotic signaling networks[J]. Cell, 2012, 149(4):780-794. [33] RIKOVA K, GUO A, ZENG Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer[J]. Cell,2007,131(6):1190-1203. [34] ANDERSEN J N, SATHYANARAYANAN S, DI BACCO A, et al. Pathway-based identification of biomarkersfor targeted therapeutics: personalized oncology with PI3K pathway inhibitors[J]. Science Translational Medicine,2010, 2(43):43-55. |
[1] |
LIU Xiuxiu, ZHANG Chao, ZHOU Yizi, TAN Ying, MI Jia, JIANG Wenguo. Construction, phenotype and preliminary application of SUMO1 T95R mutation mouse model[J]. 滨州医学院学报, 2020, 43(5): 321-325. |
[2] |
LIU Xiuxiu, ZHANG Chao, ZHOU Yizi, TAN Ying, MI Jia, JIANG Wenguo. Construction, phenotype and preliminary application of SUMO1 T95R mutation mouse model[J]. 滨州医学院学报, 0, (): 321-325. |
[3] |
. [J]. 滨州医学院学报, 2019, 42(5): 377-379. |
[4] |
. [J]. 滨州医学院学报, 2019, 42(1): 55-57. |
|
|
|
|